Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Phosphoregulation of Cardiac Inotropy via Myosin Binding Protein-C During Increased Pacing Frequency or β1-Adrenergic Stimulation.

BACKGROUND: Mammalian hearts exhibit positive inotropic responses to β-adrenergic stimulation as a consequence of protein kinase A-mediated phosphorylation or as a result of increased beat frequency (the Bowditch effect). Several membrane and myofibrillar proteins are phosphorylated under these conditions, but the relative contributions of these to increased contractility are not known. Phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) by protein kinase A accelerates the kinetics of force development in permeabilized heart muscle, but its role in vivo is unknown. Such understanding is important because adrenergic responsiveness of the heart and the Bowditch effect are both depressed in heart failure.

METHODS AND RESULTS: The roles of cMyBP-C phosphorylation were studied using mice in which either WT or nonphosphorylatable forms of cMyBP-C [ser273ala, ser282ala, ser302ala: cMyBP-C(t3SA)] were expressed at similar levels on a cMyBP-C null background. Force and [Ca(2+)]in measurements in isolated papillary muscles showed that the increased force and twitch kinetics because increased pacing or β1-adrenergic stimulation were nearly absent in cMyBP-C(t3SA) myocardium, even though [Ca(2+)]in transients under each condition were similar to WT. Biochemical measurements confirmed that protein kinase A phosphorylated ser273, ser282, and ser302 in WT cMyBP-C. In contrast, CaMKIIδ, which is activated by increased pacing, phosphorylated ser302 principally, ser282 to a lesser degree, and ser273 not at all.

CONCLUSIONS: Phosphorylation of cMyBP-C increases the force and kinetics of twitches in living cardiac muscle. Further, cMyBP-C is a principal mediator of increased contractility observed with β-adrenergic stimulation or increased pacing because of protein kinase A and CaMKIIδ phosphorylations of cMyB-C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app