Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypoglycemic activity and potential mechanism of a polysaccharide from the loach in streptozotocin-induced diabetic mice.

The present study was designed to investigate the hypoglycemic activity and the potential mechanisms of Misgurnus anguillicaudatus polysaccharide (MAP) in streptozotocin-induced diabetic mice. MAP oral administration significantly decreased the blood levels of glucose, TC, TG, LDL-C, and increased the blood levels of HDL-C and insulin in diabetic mice, concurrent with increases in body weights and pancreatic insulin contents. Moreover, MAP reversed the increased mRNA expressions of PEPCK and the reduced glycogen contents in the liver of diabetic mice. Concurrently, MAP exhibited potent anti-inflammatory and anti-oxidative activities, as evidenced by the decreased blood levels of TNF-α, IL-6, monocyte chemoattractant protein-1, MDA, and also the elevated SOD and GPx activities in the serum of diabetic mice. Furthermore, MAP also significantly improved the blood markers of the impaired liver function and renal function in diabetic mice. Altogether, these results suggest that MAP may be a potential therapeutic option for type 1 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app