Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells.

Reprogramming is one of the most essential areas of research in stem cell biology. Despite this importance, the mechanism and correlates of reprogramming remain largely unknown. In this study, we investigated the cytoplasmic remodeling and changes in metabolism that occur during reprogramming and differentiation of pluripotent stem cells. Specifically, we examined the cellular organelles of three pluripotent stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and epiblast stem cells (EpiSCs), by electron microscopy. We found that the cellular organelles of primed pluripotent EpiSCs were more similar to those of naive pluripotent ESCs and iPSCs than somatic cells. EpiSCs, as well as ESCs and iPSCs, contain large nuclei, poorly developed endoplasmic reticula, and underdeveloped cristae; however, their mitochondria were still mature relative to the mitochondria of ESCs and iPSCs. Next, we differentiated these pluripotent stem cells into neural stem cells (NSCs) in vitro and compared the morphology of organelles. We found that the morphology of organelles of NSCs differentiated from ESCs, iPSCs, and EpiSCs was indistinguishable from brain-derived NSCs. Finally, we examined the changes in energy metabolism that accompanied mitochondrial remodeling during reprogramming and differentiation. We found that the glycolytic activity of ESCs and iPSCs was greater compared with EpiSCs, and that the glycolytic activity of EpiSCs was greater compared with NSCs differentiated from ESCs, iPSCs, and EpiSCs. These results suggest that a change in the cellular state is accompanied by dynamic changes in the morphology of cytoplasmic organelles and corresponding changes in energy metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app