Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection.

Journal of Immunology 2015 Februrary 2
Staphylococcus aureus can cause difficult-to-treat chronic infections. We recently reported that S. aureus chronic infection was associated with a profound inhibition of T cell responses. In this study, we investigated the mechanisms responsible for the suppression of T cell responses during chronic S. aureus infection. Using in vitro coculture systems, as well as in vivo adoptive transfer of CFSE-labeled OT-II cells, we demonstrated the presence of immunosuppressive mechanisms in splenocytes of S. aureus-infected mice that inhibited the response of OT-II cells to cognate antigenic stimulation. Immunosuppression was IL-10/TGF-β independent but required cell-cell proximity. Using DEREG and Foxp3(gfp) mice, we demonstrated that CD4(+)CD25(+)Foxp3(+) regulatory T cells contributed, but only to a minor degree, to bystander immunosuppression. Neither regulatory B cells nor tolerogenic dendritic cells contributed to immunosuppression. Instead, we found a significant expansion of granulocytic (CD11b(+)Ly6G(+)Ly6C(low)) and monocytic (CD11b(+)Ly6G(-)Ly6C(high)) myeloid-derived suppressor cells (MDSC) in chronically infected mice, which exerted a strong immunosuppressive effect on T cell responses. Splenocytes of S. aureus-infected mice lost most of their suppressive activity after the in vivo depletion of MDSC by treatment with gemcitabine. Furthermore, a robust negative correlation was observed between the degree of T cell inhibition and the number of MDSC. An increase in the numbers of MDSC in S. aureus-infected mice by adoptive transfer caused a significant exacerbation of infection. In summary, our results indicate that expansion of MDSC and, to a minor degree, of regulatory T cells in S. aureus-infected mice may create an immunosuppressive environment that sustains chronic infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app