Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt-NF-κB signaling.

Oncology Reports 2015 March
Euphorbia fischeriana Steud is a traditional Chinese Medicine that is known to possess a variety of anticarcinogenic properties. However, the bioactive constituents in Euphorbia fischeriana Steud and molecular mechanisms underlying this action in cancer treatment remain poorly understood. The present study investigated the chemotherapy activity and molecular targets of Ethyl gallate, which is identified as the major constituent extracted from the roots of Euphorbia fischeriana Steud in breast cancer cell lines in vitro. The results showed Ethyl gallate obviously decreased cell proliferation in MDA-MB-231 and MCF-7 cells in a dose- and time-dependent manner. Highly invasive MDA-MB-231 cells were found to be highly sensitive to treatment. Furthermore, significantly decreased metastatic potential of highly metastatic MDA-MB‑231 cells by Ethyl gallate was identified via the inhibition of cell motility using invasion and migration through a polyethylene terephthalate membrane. Ethyl gallate treatment decreased the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 by the downregulation of mRNA levels using RT-PCR, enzymes that are critical to tumor invasion. Treatment with Ethyl gallate decreased phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-κB (NF-κB) activation in MDA-MB-231 cells. These results indicate that Ethyl gallate suppresses proliferation and invasion in human breast cancer cells by modulating the PI3K/Akt pathway, which may contribute to inhibiting their downstream targets such as NF-κB p-65, Bcl-2/Bax, and mRNA levels of MMP-2 and MMP-9 in breast cancer cells. Thus, the present study shed new light on Ethyl gallate, an important bioactive constituent of Euphorbia fischeriana Steud, in human breast cancer treatment. The findings may provide basal theories for wide therapeutic application in human breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app