Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.

Metallic foams with porosity ranging from 0.25 to 0.65 have been produced from TiCp, Ti-Nb-Zr and Ti-Nb-Ta prealloyed powder by using the space-holder technique, and analysed from both the pore morphology and mechanical properties' points of view. For all the foams, the most suitable porosity range for bone ingrowth appears to be 0.35 to 0.45, since these porosities lead to a pore size that is globally encompassed in the recommended 100-600 μm range. From the mechanical behavior point of view, all of the as-sintered foams demonstrate similar compression behavior in terms of their apparent Young's modulus and critical stresses. In the recommended 0.3-0.45 porosity range, their Young's modulus varies from 15 to 8 GPa, whilst their yield stress varies from 300 to 150 MPa. The first characteristic comes close to that of cortical bone, whilst the second significantly exceeds bone resistance. Compared to Ti foams, the mechanical properties of metastable TNZ and TNT alloy foams can also be regulated within a ±20% range, by selecting an appropriate post-sintering thermal treatment. This effect, which is initiated by activating reversible stress-induced β to α″ martensitic transformation, is strongly perceptible for TNZ foams, whilst much less pronounced for TNT foams.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app