Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Caveolin-1 limits the contribution of BKCa channel to MCF-7 breast cancer cell proliferation and invasion.

Increasing evidence suggests that caveolin-1 and large conductance Ca²⁺-activated potassium (BKCa) channels are implicated in the carcinogenesis processes, including cell proliferation and invasion. These two proteins have been proven to interact with each other in vascular endothelial and smooth muscle cells and modulate vascular contractility. In this study, we investigated the probable interaction between caveolin-1 and BKCa in MCF-7 breast cancer cells. We identified that caveolin-1 and BKCa were co-localized and could be reciprocally co-immunoprecipitated in human breast cancer MCF-7 cells. siRNA mediated caveolin-1 knockdown resulted in activation and increased surface expression of BKCa channel, and subsequently promoted the proliferation and invasiveness of breast cancer cells. These effects were attenuated in the presence of BKCa-siRNA. Conversely, up-regulated caveolin-1 suppressed function and surface expression of BKCa channel and exerted negative effects on breast cancer cell proliferation and invasion. Similarly, these opposing effects were abrogated by BKCa up-regulation. Collectively, our findings suggest that BKCa is a critical target for suppression by caveolin-1 in suppressing proliferation and invasion of breast cancer cells. The functional complex of caveolin-1 and BKCa in the membrane microdomain may be served as a potential therapeutic target in breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app