Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

The kidney tight junction (Review).

The tight junction is an important subcellular organelle which plays a vital role in epithelial barrier function. Claudin, as the integral membrane component of tight junctions, creates a paracellular transport pathway for various ions to be reabsorbed by the kidneys. This review summarizes advances in claudin structure, function and pathophysiology in kidney diseases. Different claudin species confer selective paracellular permeability to each of three major renal tubular segments: the proximal tubule, the thick ascending limb of Henle's loop and the distal nephron. Defects in claudin function can cause a wide spectrum of kidney diseases, such as hypomagnesemia, hypercalciuria, kidney stones and hypertension. Studies using transgenic mouse models with claudin mutations have recapitulated several of these renal disease phenotypes and have elucidated the underlying biological mechanisms. Modern recording approaches based upon scanning ion conductance microscopy may resolve the biophysical nature of claudin transport function and provide novel insight into tight junction architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app