Add like
Add dislike
Add to saved papers

Evolution from a nodeless gap to d(x(2)-y(2))-wave in underdoped La(2-x)Sr(x)CuO4.

Physical Review Letters 2013 January 26
Using angle-resolved photoemission spectroscopy (ARPES), it is revealed that the low-energy electronic excitation spectra of highly underdoped superconducting and nonsuperconducting La(2-x)Sr(x)CuO(4) cuprates are gapped along the entire underlying Fermi surface at low temperatures. We show how the gap function evolves to a d(x(2)-y(2)) form with increasing temperature or doping, consistent with the vast majority of ARPES studies of cuprates. Our results provide essential information for uncovering the symmetry of the order parameter(s) in strongly underdoped cuprates, which is a prerequisite for understanding the pairing mechanism and how superconductivity emerges from a Mott insulator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app