Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mediators involved in the hyperthermic action of neuromedin U in rats.

Neuromedin U (NmU), first was isolated from the porcine spinal cord, has subsequently been demonstrated in a number of species, in which it is present in the periphery and also the brain. Two receptors have been identified: NmU1R is mainly present in peripheral tissues, and Nmu2R in the central nervous system. NmU, a potent endogenous anorectic, serves as a catabolic signaling molecule in the brain; it inhibits food uptake, increases locomotion, activates stress mechanism, having cardiovasscular effects and, causes hyperthermia. The mechanism of this hyperthermia is unknown. In the present experiments, the effects of NmU on the colon temperature following i.c.v administration were studied in rats. For an investigation of the possible role of receptors in mediating hyperthermia, the animals were treated simultaneously with CRF 9-41 and antalarmin, a CRH1 receptor inhibitors, astressin 2B, a CRH2 receptor antagonist, haloperidol a dopamine receptor antagonist, atropine a muscarinic cholinergic receptor antagonist, noraminophenazone a cyclooxygenase inhibitor or isatin, a prostaglandin receptor antagonist. NmU increased the colon temperature, maximal action being observed at 2-3h. CRF 9-41, antalarmin, astressin 2B haloperidol, atropine, noraminophenazone and isatin prevented the NmU-induced increase in colon temperature. The results demonstrated that, when injected into the lateral brain ventricle NmU increased the body temperature, mediated by CRHR1 and CRHR2, dopamine and muscarinic cholinergic receptors. The final pathway involves prostaglandin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app