Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

CD4(+)CD25 (+) regulatory T cells are not required for mesenchymal stem cell function in fully MHC-mismatched mouse cardiac transplantation.

Although the immunomodulative properties of mesenchymal stem cells (MSCs) open up attractive possibilities in solid-organ transplantation, information concerning the optimal dose, route, timing of administration, major histocompatibility complex (MHC)-restriction and relevant mechanisms is currently lacking. Therefore, better characterization of MSC immunoregulatory activity and elucidation of its mechanisms are crucial. In this study, we confirmed that MSCs did not elicit proliferation by allogeneic CD4(+) T cells, suggesting that MSCs were not immunogenic. By using C57BL/6 mouse MSCs as donor-derived or recipient-derived or as third-party MSCs, we discovered that MSCs suppressed CD4(+) T cell proliferation and prolonged mouse cardiac allograft survival in a dose-dependent and non-MHC-restricted manner. We also found that intraperitoneal administration favored survival prolongation, although this prolongation was weaker than that via the intravenous route. Only infusion at earlier time points favored survival prolongation. Depletion of CD4(+)CD25(+) T cells did not affect the immunosuppression of MSCs on CD4(+) T cells. Moreover, MSCs did not induce regulatory T cells. The in vivo data revealed that MSCs did not increase the percentage of CD4(+)CD25(+) T cells and FoxP3 expression. More importantly, we demonstrated for the first time that depletion of CD4(+)CD25(+) T cells did not hinder MSC-induced survival prolongation, indicating that CD4(+)CD25(+) regulatory T cells were not essential for the prolongation of MSC-mediated allograft survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app