Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exogenous expression of WT1 gene influences U937 cell biological behaviors and activates MAPK and JAK-STAT signaling pathways.

Leukemia Research 2014 August
Wilms' tumor 1 (WT1) gene plays important roles in leukemogenesis. To further explore its underlying mechanisms, we transfected two WT1 isoforms, WT1(+17AA/-KTS) and WT1(+17AA/+KTS) into U937, a WT1-null monoblastic cell line, studied their effects on migration, colony formation, apoptosis, gene expression and pertinent signaling pathways of U937 cells. The results showed that WT1(+17AA/-KTS), but not WT1(+17AA/+KTS), enhanced migration and colony forming abilities of U937 cells, and suppressed etoposide-induced U937 cell apoptosis. Transfection of WT1 isoforms activated gene expressions of chemokine, and induced up-regulation of signaling molecules involved in JAK-STAT and MAPK signaling pathways. This study showed that exogenous expression of WT1 gene remarkably affected biological behaviors of U937 cells, and these effects are possibly mediated by up-regulation of genes related to chemokine, JAK-STAT and MAPK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app