Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.

Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app