Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Egr-1 mediates chronic hypoxia-induced renal interstitial fibrosis via the PKC/ERK pathway.

BACKGROUND: Chronic hypoxia-induced epithelial-to-mesenchymal transition (EMT) is a crucial process in renal fibrogenesis. Egr-1, as a transcription factor, has been proven to be important in promoting EMT. However, whether it functions in hypoxia-induced renal tubular EMT has not been fully elucidated.

METHODS: Egr-1 were detected at mRNA and protein levels by qPCR and Western blot analysis respectively after renal epithelial cells were subjected to hypoxia treatment. Meanwhile, EMT phenotype was also observed through identification of relevant EMT-specific markers. siRNA was used to knock down Egr-1 expression and subsequent changes were observed. Specific PKC and MAPK/ERK inhibitors were employed to determine the molecular signaling pathway involved in Egr-1-mediated EMT phenotype. In vivo assays using rat remnant kidney model were used to validate the in vitro results. Furthermore, Egr-1 expression was examined in the samples of CKD patients with the clinical relevance revealed.

RESULTS: Hypoxia treatment enhanced the mRNA and protein levels of Egr-1 in HK-2 cells, which was accompanied by a reduced expression of the epithelial marker E-cadherin and an enhanced expression of the mesenchymal marker Fsp-1. Downregulation of Egr-1 with siRNA reversed hypoxia-induced EMT. Using the specific inhibitors to protein kinase C (calphostin C) or MAPK/ERK (PD98059), we identified that hypoxia induced Egr-1 expression through the PKC/ERK pathway. In addition, the upregulation of Egr-1 raised endogenous Snail levels, and the downregulation of Snail inhibited Egr-1-mediated EMT in HK-2 cells. Through in vivo assays using rat remnant kidney and CKD patients' kidney tissues, we found that Egr-1 and Snail were overexpressed in tubular epithelial cells with EMT.

CONCLUSION: Egr-1 may be an important regulator of the development of renal tubular EMT induced by hypoxia through the PKC/ERK pathway and the activation of Snail. Targeting Egr-1 expression or activity might be a novel therapeutic strategy to control renal fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app