Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simulated cystic renal lesions: quantitative X-ray phase-contrast CT--an in vitro phantom study.

Radiology 2014 September
PURPOSE: To determine if grating-based x-ray phase-contrast computed tomography (CT) can allow differentiation of simulated simple, protein-rich, hemorrhagic, and enhancing cystic renal lesions in an in vitro phantom.

MATERIALS AND METHODS: An in vitro phantom specifically designed to simulate simple, protein-rich, hemorrhagic, and enhancing renal cysts was scanned with an experimental grating-based phase-contrast CT setup consisting of a Talbot-Lau interferometer with a rotating anode x-ray tube and a single photon counting detector. Various combinations of serum and saline (100% and 0% to 0% and 100%), blood and saline, blood and serum (100% and 0% to 6.25% and 93.75% for both), and an iodinated contrast agent and saline (7.6-1.6 mg per milliliter of saline) were used to reproduce the chemical composition of the different types of cysts. A thickened solution of an iodinated contrast agent calibrated with a clinical multidetector CT scanner served as contrast agent-enhanced renal parenchyma (195 HU at 80 kVp, 400 mAs and 98 HU at 140 kVp, 200 mAs). Standard attenuation- and phase-contrast images were reconstructed from the raw projection data. Quantitative values for attenuation and phase contrast and image noise were determined. Contrast-to-noise ratios were calculated. Simulated lesions were assessed for visual differentiability by means of pairwise comparison of the attenuation- and phase-contrast images and both images simultaneously.

RESULTS: Attenuation-contrast imaging showed large differences in Hounsfield units with increasing concentrations of iodine (118.9 HU for 1.6 mg/mL vs 331.4 HU for 7.6 mg/mL). Values for phase-contrast imaging were substantially distinguishable for saline, serum, and blood (7.9, 23.7, and 52.8 HU, respectively). Both imaging modalities combined allowed differentiation of all four types of simulated cysts (100% saline, 100% serum, 100% blood, and 1.6-7.6 mg of iodine per milliliter of saline) with one imaging acquisition.

CONCLUSION: Grating-based phase-contrast CT allows differentiation of simulated simple, protein-rich, hemorrhagic, and enhancing renal cysts in an in vitro phantom through simultaneous assessment of their distinct attenuation- and phase-contrast signal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app