Add like
Add dislike
Add to saved papers

Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent 'pre-renal' acute kidney injury?: con.

Kidney International 2014 December
The high chloride content of 0.9% saline leads to adverse pathophysiological effects in both animals and healthy human volunteers, changes not seen after balanced crystalloids. Small randomized trials confirm that the hyperchloremic acidosis induced by saline also occurs in patients, but no clinical outcome benefit was demonstrable when compared with balanced crystalloids, perhaps due to a type II error. A strong signal is emerging from recent large propensity-matched and cohort studies for the adverse effects that 0.9% saline has on the clinical outcome in surgical and critically ill patients when compared with balanced crystalloids. Major complications are the increased incidence of acute kidney injury and the need for renal replacement therapy, and that pathological hyperchloremia may increase postoperative mortality. However, there are no large-scale randomized trials comparing 0.9% saline with balanced crystalloids. Some balanced crystalloids are hypo-osmolar and may not be suitable for neurosurgical patients because of their propensity to cause brain edema. Saline may be the solution of choice used for the resuscitation of patients with alkalosis and hypochloremia. Nevertheless, there is evidence to suggest that balanced crystalloids cause less detriment to renal function than 0.9% saline, with perhaps better clinical outcome. Hence, we argue that chloride-rich crystalloids such as 0.9% saline should be replaced with balanced crystalloids as the mainstay of fluid resuscitation to prevent 'pre-renal' acute kidney injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app