Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of NADPH oxidase in total salvianolic acid injection attenuating ischemia-reperfusion impaired cerebral microcirculation and neurons: implication of AMPK/Akt/PKC.

OBJECTIVE: TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect.

METHODS: Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot.

RESULTS: TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation.

CONCLUSIONS: TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app