Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans.

AIM: High-intensity interval training (HIT) results in potent metabolic adaptations in skeletal muscle; however, little is known about the influence of these adaptations on energetics in vivo. We used magnetic resonance spectroscopy to examine the effects of HIT on ATP synthesis from net PCr breakdown (ATPCK ), oxidative phosphorylation (ATPOX ) and non-oxidative glycolysis (ATPGLY ) in vivo in vastus lateralis during a 24-s maximal voluntary contraction (MVC).

METHODS: Eight young men performed 6 sessions of repeated, 30-s 'all-out' sprints on a cycle ergometer; measures of muscle energetics were obtained at baseline and after the first and sixth sessions.

RESULTS: Training increased peak oxygen consumption (35.8 ± 1.4 to 39.3 ± 1.6 mL min(-1) kg(-1) , P = 0.01) and exercise capacity (217.0 ± 11.0 to 230.5 ± 11.7 W, P = 0.04) on the ergometer, with no effects on total ATP production or force-time integral during the MVC. While ATP production by each pathway was unchanged after the first session, 6 sessions increased the relative contribution of ATPOX (from 31 ± 2 to 39 ± 2% of total ATP turnover, P < 0.001) and lowered the relative contribution from both ATPCK (49 ± 2 to 44 ± 1%, P = 0.004) and ATPGLY (20 ± 2 to 17 ± 1%, P = 0.03).

CONCLUSION: These alterations to muscle ATP production in vivo indicate that brief, maximal contractions are performed with increased support of oxidative ATP synthesis and relatively less contribution from anaerobic ATP production following training. These results extend previous reports of molecular and cellular adaptations to HIT and show that 6 training sessions are sufficient to alter in vivo muscle energetics, which likely contributes to increased exercise capacity after short-term HIT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app