Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Urinary peptide profiling to differentiate between minimal change disease and focal segmental glomerulosclerosis.

BACKGROUND: Minimal change disease (MCD) and primary focal segmental glomerulosclerosis (FSGS) are the main causes of primary idiopathic nephrotic syndrome in children and adults, with diagnosis being essential for the appropriate choice of therapy and requiring renal biopsy. However, the presence of only normal glomeruli on renal biopsy of FSGS patients may lead to the misclassification of these patients as having MCD. The aim of this study was to (i) compare the peptide profile of MCD and FSGS patients with that of a group of healthy subjects, (ii) generate and validate a class prediction model to classify MCD and FSGS patients and (ii) identify candidate biomarkers of these glomerular entities by analysis of the urinary peptidome.

METHODS: The urinary peptide profile was analyzed by magnetic bead-based technology combined with MALDI-TOF mass spectrometry in 44 patients diagnosed of MCD (n = 22) and FSGS (n = 22). The resulting spectra were compiled and analyzed using ClinProTools software.

RESULTS: A class prediction model was developed to differentiate MCD and FSGS patients. The validation of this model correctly classified 81.8% (9/11) of MCD patients and 72.7% (8/11) of FSGS patients. Moreover, the signal with m/z 1913.60, identified as a fragment of uromodulin, and the signal with m/z 2392.54, identified as a fragment of alpha-1-antitrypsin, showed higher and lower peak areas, respectively, in FSGS patients compared with MCD patients.

CONCLUSIONS: The simple, non-invasive technique described in the present study may be a useful tool to help clinicians by confirming diagnoses achieved by renal biopsy, thereby reducing misdiagnoses and avoiding the implementation of inappropriate therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app