Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of the metabolic effects of irisin on skeletal muscle in vitro.

AIMS: This work explored the effects of irisin on metabolism, gene expression and mitochondrial content in cultured myocytes.

METHODS: C2C12 myocytes were treated with various concentrations of irisin for various durations. Glycolysis and oxidative metabolism were quantified by measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and mitochondrial content was assessed by flow cytometry and confocal microscopy.

RESULTS: Cells treated with irisin exhibited significantly increased oxidative metabolism. Irisin treatment also significantly increased mitochondrial uncoupling at various doses and durations. Lastly, treatment with irisin also significantly elevated metabolic gene expression including peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), irisin, glucose transporter 4 (GLUT4) and mitochondrial uncoupling protein 3 (UCP3) leading to increased mitochondrial biogenesis.

CONCLUSIONS: Our observations are the first to document increased metabolism in myocytes through irisin-mediated induction of mitochondrial biogenesis and uncoupling with corresponding gene expression. These observations support the need for further investigation into the therapeutic and pharmacological effects of irisin, as well as development of irisin-based therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app