Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endothelin-1 regulates H⁺-ATPase-dependent transepithelial H⁺ secretion in zebrafish.

Endocrinology 2014 May
Endothelin-1 (EDN1) is an important regulator of H⁺ secretion in the mammalian kidney. EDN1 enhances renal tubule H⁺-ATPase activity, but the underlying mechanism remains unclear. To further elucidate the role of EDN1 in vertebrates' acid-base regulation, the present study used zebrafish as the model to examine the effects of EDN1 and its receptors on transepithelial H⁺ secretion. Expression of EDN1 and one of its receptors, EDNRAa, was stimulated in zebrafish acclimated to acidic water. A noninvasive scanning ion-selective electrode technique was used to show that edn1 overexpression enhances H⁺ secretion in embryonic skin at 3 days post fertilization. EDNRAa loss of function significantly decreased EDN1- and acid-induced H⁺ secretion. Abrogation of EDN1-enhanced H⁺ secretion by a vacuolar H⁺-ATPase inhibitor (bafilomycin A1) suggests that EDN1 exerts its action by regulating the H⁺-ATPase-mediated H⁺ secretion. EDN1 does not appear to affect H⁺ secretion through either altering the abundance of H⁺-ATPase or affecting the cell differentiation of H⁺-ATPase-rich ionocytes, because the reduction in secretion upon ednraa knockdown was not accompanied by decreased expression of H⁺-ATPase or reduced H⁺-ATPase-rich cell density. These findings provide evidence that EDN1 signaling is involved in acid-base regulation in zebrafish and enhance our understanding of EDN1 regulation of transepithelial H⁺ secretion in vertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app