Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers.

Cell Reports 2014 January 31
The histone lysine demethylase KDM5B regulates gene transcription and cell differentiation and is implicated in carcinogenesis. It contains multiple conserved chromatin-associated domains, including three PHD fingers of unknown function. Here, we show that the first and third, but not the second, PHD fingers of KDM5B possess histone binding activities. The PHD1 finger is highly specific for unmodified histone H3 (H3K4me0), whereas the PHD3 finger shows preference for the trimethylated histone mark H3K4me3. RNA-seq analysis indicates that KDM5B functions as a transcriptional repressor for genes involved in inflammatory responses, cell proliferation, adhesion, and migration. Biochemical analysis reveals that KDM5B associates with components of the nucleosome remodeling and deacetylase (NuRD) complex and may cooperate with the histone deacetylase 1 (HDAC1) in gene repression. KDM5B is downregulated in triple-negative breast cancer relative to estrogen-receptor-positive breast cancer. Overexpression of KDM5B in the MDA-MB 231 breast cancer cells suppresses cell migration and invasion, and the PHD1-H3K4me0 interaction is essential for inhibiting migration. These findings highlight tumor-suppressive functions of KDM5B in triple-negative breast cancer cells and suggest a multivalent mechanism for KDM5B-mediated transcriptional regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app