Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

From GWAS to function: genetic variation in sodium channel gene enhancer influences electrical patterning.

The electrical activity of the heart depends on the correct interplay between key transcription factors and cis-regulatory elements, which together regulate the proper heterogeneous expression of genes encoding for ion channels and other proteins. Genome-wide association studies of ECG parameters implicated genetic variants in the genes for these factors and ion channels modulating conduction and depolarization. Here, we review recent insights into the regulation of localized expression of ion channel genes and the mechanism by which a single-nucleotide polymorphism (SNP) associated with alterations in cardiac conduction patterns in humans affects the transcriptional regulation of the sodium channel genes, SCN5A and SCN10A. The identification of regulatory elements of electrical activity genes helps to explain the impact of genetic variants in non-coding regulatory DNA sequences on regulation of cardiac conduction and the predisposition for cardiac arrhythmias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app