Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bcl-xL silencing induces alterations in hsa-miR-608 expression and subsequent cell death in A549 and SK-LU1 human lung adenocarcinoma cells.

Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating cell death. Short interfering RNA-based transfection of A549 and SK-LU1 lung adenocarcinoma cells was successful in inducing a reduction in bcl-xL expression levels, resulting in a decrease in cell viability. A total of 10 miRNAs were found to be significantly differentially expressed when compared between siRNA-transfected and non-transfected cells including hsa-miR-181a, hsa-miR-769-5p, hsa-miR-361-5p, hsa-miR-1304 and hsa-miR-608. When overexpression studies on hsa-miR-608 was performed via transfection of miRNA mimics, cell death was found to be induced in A549 and SK-LU1 cells in comparison to untreated cells. This effect was reversed when knockdown studies involving anti-sense inhibitors were introduced. Combination of siRNA based silencing of bcl-xL (siBcl-xL) followed by anti-sense inhibitor transfection led to a decrease in the apoptotic population of A549 and SK-LU1 cells in comparison to cells only treated with siBcl-xL, illustrating the connection between bcl-xL, hsa-miR-608 and cell death. Gene target prediction analysis implicated the PI3K/AKT, WNT, TGF-β, and ERK signaling pathways as targets of bcl-xL induced miRNA alterations. We have demonstrated that bcl-xL silencing in A549 and SK-LU1 cells leads to the occurrence of cell death through the dysregulation of specific miRNAs. This study also provides a platform for anti-sense gene therapy whereby miRNA expression can be exploited to increase the apoptotic properties in lung adenocarcinoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app