Effects of oil dispersant and oil on sorption and desorption of phenanthrene with Gulf Coast marine sediments

Yanyan Gong, Xiao Zhao, S E O'Reilly, Tianwei Qian, Dongye Zhao
Environmental Pollution 2014, 185: 240-9
Effects of a model oil dispersant (Corexit EC9500A) on sorption/desorption of phenanthrene were investigated with two marine sediments. Kinetic data revealed that the presence of the dispersant at 18 mg/L enhanced phenanthrene uptake by up to 7%, whereas the same dispersant during desorption reduced phenanthrene desorption by up to 5%. Sorption isotherms confirmed that at dispersant concentrations of 18 and 180 mg/L, phenanthrene uptake progressively increased for both sediments. Furthermore, the presence of the dispersant during desorption induced remarkable sorption hysteresis. The effects were attributed to added phenanthrene affinity and capacity due to sorption of the dispersant on the sediments. Dual-mode models adequately simulated sorption isotherms and kinetic data in the presence of the dispersant. Water accommodated oil (WAO) and dispersant-enhanced WAO increased phenanthrene sorption by up to 22%. This information is important for understanding roles of oil dispersants on the distribution and transport of petroleum PAHs in seawater-sediments.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"