Add like
Add dislike
Add to saved papers

Widespread reductions in gray matter volume in depression.

Abnormalities in functional limbic-anterior cingulate-prefrontal circuits associated with emotional reactivity, evaluation and regulation have been implicated in the pathophysiology of major depressive disorder (MDD). However, existing knowledge about structural alterations in depression is equivocal and based on cohorts of limited sample size. This study used voxel-based morphometry (VBM) and surface-based cortical thickness to investigate the structure of these circuits in a large and well-characterized patient cohort with MDD. Non-geriatric MDD outpatients (n = 102) and age- and gender-matched healthy control participants (n = 34) provided T1-weighted magnetic resonance imaging data during their baseline visit as part of the International Study to Predict Optimized Treatment for Depression. Whole-brain VBM volumetric and surface-based cortical thickness assessments were performed voxel-wise and compared (at p < 0.05 corrected for multiple comparisons) between the MDD and control groups. MDD participants had reduced gray matter volume in the anterior cingulate cortex, regions of the prefrontal circuits, including dorsolateral and dorsomedial prefrontal cortices, and lateral and medial orbitofrontal cortices, but not in limbic regions. Additional reductions were observed cortically in the posterior temporal and parieto-occipital cortices and, subcortically in the basal ganglia and cerebellum. Focal cortical thinning in the medial orbitofrontal cortex was also observed for the MDD group. These alterations in volume and cortical thickness were not associated with severity of depressive symptoms. The findings demonstrate that widespread gray matter structural abnormalities are present in a well-powered study of patients with depression. The patterns of gray matter loss correspond to the same brain functional network regions that were previously established to be abnormal in MDD, which may support an underlying structural abnormality for these circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app