Add like
Add dislike
Add to saved papers

Capture of carbon dioxide by amine-loaded as-synthesized TiO2 nanotubes.

Titanium-based adsorbents for CO2 capture were prepared through impregnating the as-synthesized TiO2 nanotubes (TiNT) with four kinds of amines, namely monoethanolamine (MEA), ethylenediamine (EDA), triethylenetetramine (TETA) and tetraethylenepentamine (TEPA). The resultant samples were characterized by X-ray diffraction, low-temperature N2 adsorption as well as transmission electron microscopy. The absorption of CO2 was carried out in a dynamic packed column. The sample impregnated with TEPA showed a better adsorption capacity due to its higher amino groups content. In addition, CO2 adsorption capacity increases as the amount of amine loaded increases. Therefore, TiNT-TEPA-69 showed the highest CO2 adsorption capacity among the three samples impregnated with TETA; approximately 4.10 mmol/g at 30 degrees C. In addition, the dynamic adsorption/desorption performance was investigated. The adsorption capacity of TiNT-TEPA-69 dropped slightly (about 2%) during a total of five cycles. The TiNT-TEPA-69 adsorbent exhibited excellent CO2 adsorption/desorption performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app