Journal Article
Observational Study
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Serum biomarkers of brain injury to classify outcome after pediatric cardiac arrest*.

OBJECTIVES: Morbidity and mortality in children with cardiac arrest largely result from neurologic injury. Serum biomarkers of brain injury can potentially measure injury to neurons (neuron-specific enolase), astrocytes (S100b), and axons (myelin basic protein). We hypothesized that serum biomarkers can be used to classify outcome from pediatric cardiac arrest.

DESIGN: Prospective observational study.

SETTING: Single tertiary pediatric hospital.

PATIENTS: Forty-three children with cardiac arrest.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We measured serum neuron-specific enolase, S100b, and myelin basic protein on days 1-4 and 7 after cardiac arrest. We recorded demographics, details of the cardiac arrest and resuscitation, and Pediatric Cerebral Performance Category at hospital discharge and 6 months. We analyzed the association of biomarker levels at 24, 48, and 72 hours with favorable (Pediatric Cerebral Performance Category 1-3) or unfavorable (Pediatric Cerebral Performance Category 4-6) outcome and mortality. Forty-three children (49% female; mean age of 5.9 ± 6.3) were enrolled and 17 (40%) died. Serum S100b concentrations peaked earliest, followed by neuron-specific enolase and finally myelin basic protein. Serum neuron-specific enolase and S100b concentrations were increased in the unfavorable versus favorable outcome group and in subjects who died at all time points (all p < 0.05). Serum myelin basic protein at 24 and 72 hours correctly classified survival but not good versus poor outcome. Using best specificity, serum S100b and neuron-specific enolase had optimal positive and negative predictive values at 24 hours to classify both favorable versus unfavorable outcome and survival, whereas serum myelin basic protein's best accuracy occurred at 48 hours. Receiver operator curves for serum S100b and neuron-specific enolase to classify favorable versus unfavorable outcome at 6 months were superior to clinical variables.

CONCLUSIONS: Preliminary data show that serum S100b, neuron-specific enolase, and myelin basic protein may aid in outcome classification of children surviving cardiac arrest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app