Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mmu-miR-702 functions as an anti-apoptotic mirtron by mediating ATF6 inhibition in mice.

Gene 2013 December 2
MicroRNAs (miRNAs) are a group of endogenous, small, noncoding RNAs that function as key post-transcriptional regulators. miRNAs are involved in many biological processes including apoptosis. In this study, mouse miR-702 (mmu-miR-702), a mirtron derived from the 13th intron of the Plod3 gene, was identified as a regulator of anti-apoptosis. mmu-miR-702 was down-regulated after treatment with the apoptosis-inducer isoproterenol both in vivo and in vitro. According to over-expression experiments, mmu-miR-702 inhibited apoptosis as well as the expression levels of a subset of apoptosis-related genes including activating transcription factor 6 (ATF6). An interaction between mmu-miR-702 and the ATF6 3'-UTR binding site was confirmed using luciferase reporter and western blot assays. This is the first report of ATF6 interaction with miRNA. Although the possible existence of miR-702 in the human genome is low, our results indicate that mirtrons also participate in the process of apoptosis and may provide a novel study strategy for apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app