Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice

P K Kamat, A Kalani, S Givvimani, P B Sathnur, S C Tyagi, N Tyagi
Neuroscience 2013 November 12, 252: 302-19
High levels of homocysteine (Hcy), known as hyperhomocysteinemia are associated with neurovascular diseases. H2S, a metabolite of Hcy, has potent anti-oxidant and anti-inflammatory activities; however, the effect of H2S has not been explored in Hcy (IC)-induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy-induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild-type (WT) males ages 8-10 weeks, WT+artificial cerebrospinal fluid (aCSF), WT+Hcy (0.5 μmol/μl) intracerebral injection (IC, one time only prior to NaHS treatment), WT+Hcy+NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected i.p. once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased malondialdehyde, nitrite level, acetylcholinestrase activity, tumor necrosis factor-alpha, interleukin-1 beta, glial fibrillary acidic protein, inducible nitric oxide synthase, endothelial nitric oxide synthase and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF-treated groups. Further, increased expression of neuron-specific enolase, S100B and decreased expression of (post-synaptic density-95, synaptosome-associated protein-97) synaptic protein indicated neurodegeneration. Brain sections of Hcy-treated mice showed damage in the cortical area and periventricular cells. Terminal deoxynucleotidyl transferase-mediated, dUTP nick-end labeling-positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of matrix metalloproteinase (MMP) MMP9, MMP2 and decreased expression of tissue inhibitor of metalloproteinase (TIMP) TIMP-1, TIMP-2, tight junction proteins (zonula occulden 1) in Hcy-treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy-induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"