Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification.

MicrobiologyOpen 2013 October
Lack of molybdenum cofactor (Moco) in Escherichia coli leads to hypersensitivity to the mutagenic and toxic effects of N-hydroxylated base analogs, such as 6-N-hydroxylaminopurine (HAP). This phenotype is due to the loss of two Moco-dependent activities, YcbX and YiiM, that are capable of reducing HAP to adenine. Here, we describe two novel HAP-sensitive mutants containing a defect in iscS or tusA (yhhP) gene. IscS is a major L-cysteine desulfurase involved in iron-sulfur cluster synthesis, thiamine synthesis, and tRNA thiomodification. TusA is a small sulfur-carrier protein that interacts with IscS. We show that both IscS and TusA operate within the Moco-dependent pathway. Like other Moco-deficient strains, tusA and iscS mutants are HAP sensitive and resistant to chlorate under anaerobic conditions. The base-analog sensitivity of iscS or tusA strains could be suppressed by supplying exogenous L-cysteine or sulfide or by an increase in endogenous sulfur donors (cysB constitutive mutant). The data suggest that iscS and tusA mutants have a defect in the mobilization of sulfur required for active YcbX/YiiM proteins as well as nitrate reductase, presumably due to lack of functional Moco. Overall, our data imply a novel and indispensable role of the IscS/TusA complex in the activity of several molybdoenzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app