Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Background level and composition of polybrominated diphenyl ethers (PBDEs) in creek and subtidal sediments in a rural area of Korea.

To study background levels of polybrominated diphenyl ethers (PBDEs) in Korea, concentrations of PBDEs were measured for creek and subtidal sediments around Goseong Bay. Total concentrations of PBDEs (Σ19PBDE) in creek sediments ranged from 0.18 to 13.95 ng/g dry weight and were about twice those in subtidal sediments. PBDE concentrations were about two orders of magnitude lower than those reported in industrially active regions of Korea and other countries. BDE 209 was a major congener, accounting for 79.0% and 78.5% of total PBDEs in creek and subtidal sediments, respectively. This is consistent with the high consumption of deca-BDE in Korea and the very high octanol-water partition coefficient of deca-BDE. The relative compositions of PBDEs in creek and subtidal sediments were similar. BDE 209 and Σ19PBDE had statistically significant correlations with total organic carbon, the lower brominated congeners had a poor correlation with total organic carbon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app