Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake.

Water Research 2013 September 16
Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 °C), operating temperature (mesophilic at 35 ± 2 °C, thermophilic at 55 ± 2 °C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 °C and 160 °C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app