Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Growth temperature-induced changes in biomass accumulation, photosynthesis and glutathione redox homeostasis as influenced by hydrogen peroxide in cucumber.

Hydrogen peroxide (H2O2) and glutathione (GSH) are involved in the stress response in plants. To elucidate the role of H2O2 in the acclimation of CO2 assimilation under sub- or supra-optimal growth temperatures, we examined the effect and interaction of H2O2 manipulation on the photosynthetic metabolism of cucumber plants (Cucumis sativus L.) grown under five temperature regimes spanning above and below the optimal growth temperature; 11/9, 18/15, 25/20, 32/27, and 39/33 °C (day/night), with or without dimethylthiourea (DMTU) or H2O2 treatment. As expected, exposure to sub- or supra-optimal growth temperatures resulted in decreased plant growth, associated with a decline in CO2 assimilation (Asat), Rubisco content, and activities of enzymes involved in the CO2 assimilation, as well as a decrease in the ratio of reduced (GSH) to oxidized (GSSG) glutathione (GSH/GSSG). Foliar application of H2O2 promoted, whilst DMTU retarded the capacity of plants to acclimate to non-optimal growth temperatures; this was consistently shown in altered activity of redox-sensitive enzymes involved in CO2 assimilation. These results strongly suggest that the influence of growth temperature on CO2 assimilation was primarily targeted at the activities of the redox-sensitive enzymes of CO2 assimilation. Meanwhile, the data suggest that the cellular H2O2 level is an important signal for the glutathione-dependent regulation of redox-sensitive enzymes of CO2 assimilation in cucumber plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app