Preeclampsia is associated with the presence of transcriptionally active placental fragments in the maternal lung

Aletta J Buurma, Marlies E Penning, Frans Prins, Joke M Schutte, Jan Anthonie Bruijn, Suzanne Wilhelmus, Augustine Rajakumar, Kitty W M Bloemenkamp, S Ananth Karumanchi, Hans J Baelde
Hypertension 2013, 62 (3): 608-13
Preeclampsia is associated with increased levels of the circulating antiangiogenic factor sFlt-1 and with an excessive shedding of placenta-derived multinucleated syncytial aggregates into the maternal circulation. However, it remains unclear whether these aggregates are transcriptionally active in the maternal organs and can, therefore, contribute to the systemic manifestations of preeclampsia. In this study, we measured placental soluble fms-like tyrosine kinase-1 (sFlt-1) mRNA levels in preeclamptic- and control placentas and performed RNA in situ hybridization to localize the main placental expression site of sFlt-1 mRNA. Because the maternal lung is the first capillary bed that circulating syncytial aggregates traverse, we studied the presence and persistence of placental material in lungs of preeclamptic and control subjects. To confirm the placental origin of these aggregates in maternal lungs, immunohistochemistry for the placenta-specific marker hCG (human chorionic ghonadotropin) and Y chromosome in situ hybridization were performed. Using human placental tissue, we found that syncytial knots are the principal site of expression of the antiangiogenic factor sFlt-1. In addition, autopsy material obtained from women with preeclampsia (n=9) showed significantly more placenta-derived syncytial aggregates in the lungs than in control subjects (n=26). Importantly, these aggregates still contained the antiangiogenic factor sFlt-1 after their entrapment in the maternal lungs. The current study confirms the important role of syncytial knots in placental sFlt-1 mRNA production. In addition, it shows a significant association between preeclampsia and larger quantities of sFlt-1 containing syncytial aggregates in maternal lungs, suggesting that the transfer of syncytial aggregates to the maternal compartment may contribute to the systemic endothelial dysfunction that characterizes preeclampsia.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"