Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses.

Galactinol synthase (GOLS, EC 2.4.1.123), a key enzyme in the synthesis of raffinose family oligosaccharides (RFOs), catalyzes the condensation of UDP-galactose with myo-inositol to produce galactinol as the sole donor for the synthesis of RFOs. RFOs have been implicated in mitigating effects of environmental stresses on plants. TsGOLS2, was cloned from Thellungiella salsuginea with high homology to AtGOLS2. TsGOLS2 was up-regulated by several abiotic stresses. We overexpressed TsGOLS2 in Arabidopsis thaliana. The contents of galactinol, raffinose, and α-ketoglutaric acid were significantly increased in transgenic plants. Compared to wild type plants, salt-stressed transgenic A. thaliana exhibited higher germination rate, photosynthesis ability, and seedling growth. After being treated with osmotic stress by high concentration of sorbitol, transgenic plants retained high germination rates and grew well during early development. These results indicated that overexpression of TsGOLS2 in A. thaliana improved the tolerance of transgenic plants to high salinity and osmotic stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app