Add like
Add dislike
Add to saved papers

Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-β.

AIM: To examine whether protein kinase C (PKC) and associated downstream mechanisms are involved in hyperglycaemia (HG)-evoked blood-brain barrier (BBB) damage.

METHODS: The activities of total PKC (Peptag assay), NADPH oxidase (lucigenin assay) and matrix metalloproteinase-2 (MMP-2; gelatin zymography) were measured in human brain microvascular endothelial cells (HBMEC) exposed to normoglycaemia (5.5 mM) or HG (25 mM) using the specific assays indicated in parentheses. The integrity and function of the in vitro models of human BBB were assessed by measurements of transendothelial electrical resistance and paracellular flux of permeability markers, respectively. Occludin protein expression was studied by immunoblotting.

RESULTS: HG significantly compromised the BBB integrity and enhanced total PKC activity to which increases in PKC-β and PKC-βII isoforms contributed the most. Elevations in NADPH oxidase and MMP-2 activities and decreases in occludin levels contributed to barrier dysfunction. Selective inhibition of PKC-β isoform prevented the changes observed in occludin expression and the aforementioned enzyme activities and thus effectively preserved barrier integrity. Similarly, apocynin, a specific NADPH oxidase inhibitor, also effectively neutralized the effects of HG on barrier integrity, MMP-2 activity, occludin expression and PKC-β activity.

CONCLUSION: HG promotes cerebral-barrier dysfunction through activation of PKC-β and consequent stimulations of oxidative stress and tight junction dissolution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app