Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel.

Despite numerous reports implicating salicylic acid (SA) in plant salinity responses, the specific ionic mechanisms of SA-mediated adaptation to salt stress remain elusive. To address this issue, a non-invasive microelectrode ion flux estimation technique was used to study kinetics of NaCl-induced net ion fluxes in Arabidopsis thaliana in response to various SA concentrations and incubation times. NaCl-induced K(+) efflux and H(+) influx from the mature root zone were both significantly decreased in roots pretreated with 10-500 μM SA, with strongest effect being observed in the 10-50 μM SA range. Considering temporal dynamics (0-8-h SA pretreatment), the 1-h pretreatment was most effective in enhancing K(+) retention in the cytosol. The pharmacological, membrane potential, and shoot K(+) and Na(+) accumulation data were all consistent with the model in which the SA pretreatment enhanced activity of H(+)-ATPase, decreased NaCl-induced membrane depolarization, and minimized NaCl-induced K(+) leakage from the cell within the first hour of salt stress. In long-term treatments, SA increased shoot K(+) and decreased shoot Na(+) accumulation. The short-term NaCl-induced K(+) efflux was smallest in the gork1-1 mutant, followed by the rbohD mutant, and was highest in the wild type. Most significantly, the SA pretreatment decreased the NaCl-induced K(+) efflux from rbohD and the wild type to the level of gork1-1, whereas no effect was observed in gork1-1. These data provide the first direct evidence that the SA pretreatment ameliorates salinity stress by counteracting NaCl-induced membrane depolarization and by decreasing K(+) efflux via GORK channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app