Add like
Add dislike
Add to saved papers

From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae.

In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app