Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.

The human eye is one of the most sophisticated organs, with perfectly interrelated retina, pupil, iris cornea, lens, and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetic retinopathy (DR) and glaucoma may lead to blindness. The identification of retinal anatomical regions is a prerequisite for the computer-aided diagnosis of several retinal diseases. The manual examination of optic disk (OD) is a standard procedure used for detecting different stages of DR and glaucoma. In this article, a novel automated, reliable, and efficient OD localization and segmentation method using digital fundus images is proposed. General-purpose edge detection algorithms often fail to segment the OD due to fuzzy boundaries, inconsistent image contrast, or missing edge features. This article proposes a novel and probably the first method using the Attanassov intuitionistic fuzzy histon (A-IFSH)-based segmentation to detect OD in retinal fundus images. OD pixel intensity and column-wise neighborhood operation are employed to locate and isolate the OD. The method has been evaluated on 100 images comprising 30 normal, 39 glaucomatous, and 31 DR images. Our proposed method has yielded precision of 0.93, recall of 0.91, F-score of 0.92, and mean segmentation accuracy of 93.4%. We have also compared the performance of our proposed method with the Otsu and gradient vector flow (GVF) snake methods. Overall, our result shows the superiority of proposed fuzzy segmentation technique over other two segmentation methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app