Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lipoprotein apheresis of hypercholesterolemic patients mediates vasoprotective gene expression in human endothelial cells.

OBJECTIVE: Hypercholesterolemia is an important risk factor of cardiovascular diseases. Lipoprotein apheresis is an efficient strategy to reduce the serum low-density lipoprotein (LDL)-cholesterol and lipoprotein(a) levels and cardiovascular complications in patients with severe hypercholesterolemia. The underlying molecular mechanisms are not well-understood. In this study, we analyzed the impact of lipoprotein apheresis on gene expression in human endothelial cells.

METHODS: Human endothelial cells were stimulated with serum of hypercholesterolemic patients before and after lipoprotein apheresis. The expression of endothelial lipoprotein receptors, nitric oxide (NO) synthase and adhesion molecules was quantified by real-time PCR and Western blot.

RESULTS: Lipoprotein apheresis reduced the expression of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells. Low-density lipoprotein (LDL) receptor expression remained unchanged. The mRNA expression of the endothelial nitric oxide synthase (eNOS) was increased with serum of hypercholesterolemic patients after lipoprotein apheresis. In contrast, endothelial expression of vascular cell adhesion molecule 1 (VCAM-1) was reduced in response to serum after lipoprotein apheresis.

CONCLUSION: Lipoprotein apheresis reduced the expression of the proatherosclerotic oxLDL receptor LOX-1 and adhesion molecule VCAM-1 and increased the expression of vasoprotective and NO generating eNOS in human endothelial cells in response to serum of hypercholesterolemic patients. These novel molecular mechanisms may account for the antiatherosclerotic and vasoprotective potential of lipoprotein apheresis in patients with hypercholesterolemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app