Add like
Add dislike
Add to saved papers

Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum.

Epimedium sagittatum (Sieb. et Zucc.) Maxim, a popular traditional Chinese medicinal plant, has been widely used for treating sexual dysfunction and osteoporosis in China. The main bioactive components in herba epimedii are prenylated flavonol glycosides, which are end products of a branch of the flavonoid biosynthetic pathway. The MYB transcription factors (TF) act as activators or repressors to regulate the flavonoid pathway. In this study, 13 full-length cDNA clones of R2R3-MYB TFs from E. sagittatum (designated as EsMYB1 to EsMYB13) were isolated and characterized. Sequence similarity and phylogenetic analysis placed nine R2R3-MYB members of epimedii into five subgroups of the Arabidopsis R2R3-MYB family, while four members were not clustered into a defined subgroup. The number and length of introns from epimedii R2R3-MYB genes varied significantly, but intron positions and phases were well conserved. Expression patterns of epimedii R2R3-MYB genes in various tissues showed diverse. Finally, it is suggested that five epimedii R2R3-MYB genes may be involved in regulating the flavonoid pathway and could be used as valuable candidate genes for metabolic engineering studies in future. Sequence information of 13 R2R3-MYB genes discovered here will also provide an entry point into the overview of whole R2R3-MYB family in epimedii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app