Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression.

Molecules and Cells 2013 January
We investigated the relationship between oct4 gene expression patterns and CpG sites methylation profiles during ES cell differentiation into neurons, and identified relevant binding factor. The oct4 gene expression level gradually declined as ES cell differentiation progressed, and the CpG sites in the oct4 proximal enhancer (PE) and promoter regions were methylated in concert with ES cell differentiation. An electro-mobility shift assay (EMSA) showed that putative proteins bind to CpG sites in the oct4 PE/promoter. We purified CpG binding proteins with DNAbinding purification method, and NonO was identified by liquid chromatography-mass spectrometry. EMSA with specific competitors revealed that NonO specifically binds to the conserved CCGGTGAC sequence in the oct4 promoter. Methylation at a specific cytosine residue (CC* GGTGAC) reduced the binding affinity of NonO for the recognition sequence. Chromatin immunoprecipitation analysis confirmed that NonO binds to the unmethylated oct4 promoter. There were no changes in the NonO mRNA and protein levels between ES cells and differentiated cells. The transcriptional role of NonO in oct4 gene expression was evaluated by luciferase assays and knockdown experiments. The luciferase activity significantly increased threefold when the NonO expression vector was cotransfected with the NonO recognition sequence, indicating that NonO has a transcription activator effect on oct4 gene expression. In accordance with this effect, when NonO expression was inhibited by siRNA treatment, oct4 expression was also significantly reduced. In summary, we purified NonO, a novel protein that binds to the CpG island of oct4 promoter, and positively regulates oct4 gene expression in ES cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app