Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Kidney-specific WNK1 regulates sodium reabsorption and potassium secretion in mouse cortical collecting duct.

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is a kinase-deficient variant of WNK1 that is expressed exclusively in the kidney. It is abundantly expressed in the distal convoluted tubule (DCT) and to a lesser extent in the cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct (CCD). KS-WNK1 inhibits Na(+)-K(+)-2Cl(-)- and sodium chloride cotransporter-mediated Na(+) reabsorption in cTAL and DCT, respectively. Here, we investigated the role of KS-WNK1 in regulating Na(+) and K(+) transport in CCD using in vitro microperfusion of tubules isolated from KS-WNK1 knockout mice and control wild-type littermates. Because baseline K(+) secretion and Na(+) reabsorption were negligible in mouse CCD, we studied tubules isolated from mice fed a high-K(+) diet for 2 wk. Compared with that in wild-type tubules, K(+) secretion was reduced in KS-WNK1 knockout CCD perfused at a low luminal fluid rate of ~1.5 nl/min. Na(+) reabsorption and the lumen-negative transepithelial potential difference were also lower in the KS-WNK1 knockout CCD compared with control CCD. Increasing the perfusion rate to ~5.5 nl/min stimulated K(+) secretion in the wild-type as well as knockout CCD. The magnitudes of flow-stimulated increase in K(+) secretion were similar in wild-type and knockout CCD. Maxi-K(+) channel inhibitor iberiotoxin had no effect on K(+) secretion when tubules were perfused at ~1.5 nl/min, but completely abrogated the flow-dependent increase in K(+) secretion at ~5.5 nl/min. These findings support the notion that KS-WNK1 stimulates ROMK-mediated K(+) secretion, but not flow-dependent K(+) secretion mediated by maxi-K(+) channels in CCD. In addition, KS-WNK1 plays a role in regulating Na(+) transport in the CCD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app