Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats.

Magnetic iron oxide nanoparticles with appropriate surface chemistry have been widely used with potential new applications in biomedical industry. Therefore, the aim of this study was to assess the size-, dose-, and time-dependent effects, after acute oral exposure to iron oxide-30 NP (Fe(2)O(3)-30), on various biochemical enzyme activities of clinical significances in a female Wistar rat model. Rats were exposed to three different doses (500, 1,000, and 2,000 mg/kg) of Fe(2)O(3)-30 and Fe(2)O(3)-Bulk along with control. Fe(2)O(3)-30 had no effect on growth, behavior, and nutritional performance of animals. Fe(2)O(3)-30 caused significant inhibition of acetylcholinestrase in red blood cells as well as in brains of treated rats. Further, more than 50% inhibition of total, Na(+)-K(+), Mg(2+), and Ca(2+)-ATPases activities, as observed in brains of exposed female rats, may be the result of disturbances in cellular physiology and the iono-regulatory process. Activation of the hepatotoxicity marker enzymes, aspartate aminotransferase and alanine aminotransferase, was recorded in serum and liver, whereas inhibition was observed in kidney. Similarly, enhancement of lactate dehydrogenase activity was observed in serum and liver; however, a decrease in enzyme levels was observed in kidneys of Fe(2)O(3)-30-treated rats. On the other hand, Fe(2)O(3)-Bulk did not depict any significant changes in these biochemical parameters, and alterations were near to control. Therefore, this study suggests that exposure to nanosize particles at acute doses may cause adverse changes in animal biochemical profiles. The use of the rat model signifies the correlation with the human system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app