Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper.

In forensic molecular pathology, quantitative real-time polymerase chain reaction (RT-qPCR) provides a rapid and sensitive method to investigate functional changes in the death process. Accurate and reliable relative RT-qPCR requires ideal amplification efficiencies of target and reference genes. However, the amplification efficiency, changing during PCR, may be overestimated by the traditional standard curve method. No single gene meets the criteria of an ideal endogenous reference. Therefore, it is necessary to select suitable reference genes for specific requirements. The present study evaluated 32 potential reference genes in the human brain of 15 forensic autopsy cases using three different statistical algorithms, geNorm, NormFinder, and BestKeeper. On RT-qPCR data analyses using a completely objective and noise-resistant algorithm (Real-time PCR Miner), 24 genes met standard efficiency criteria. Validation of their stability and suitability as reference genes using geNorm suggested IPO8 and POLR2A as the most stable ones, and NormFinder indicated that IPO8 and POP4 had the highest expression stabilities, while BestKeeper highlighted ABL1 and ELF1 as reference genes with the least overall variation. Combining these three algorithms suggested the genes IPO8, POLR2A, and PES1 as stable endogenous references in RT-qPCR analysis of human brain samples, with YWHAZ, PPIA, HPRT1, and TBP being the least stable ones. These findings are inconsistent with those of previous studies. Moreover, the relative stability of target and reference genes remains unknown. These observations suggest that suitable reference genes should be selected on the basis of specific requirements, experiment conditions, and the characteristics of target genes in practical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app