Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation.

CONTEXT: Maillard reaction is implicated in the development of pathophysiology in age-related diseases. The search for newer Maillard reaction inhibitors is a priority among strategies to combat diabetes complications.

OBJECTIVE: To evaluate the inhibitory potential of hesperidin, its derivatives and their stereoisomers against advanced glycation end-products (AGEs) formation.

MATERIALS AND METHODS: Hesperidin and hesperetin were chirally separated and the inhibitory effects of 1:1 mixture of (2S)- and (2R)-hesperidin (1), (2S)-hesperidin (2), (2R)-hesperidin (3), 1:1 mixture of (S)- and (R)-hesperetin (4), (S)-hesperetin (5), (R)-hesperetin (6), and monoglucosyl hesperidin (7) [1:1 mixture of (2S)-glucosyl hesperidin (8) and (2R)-glucosyl hesperidin (9)] at a concentration of 1 mM on protein glycation reaction have been revealed using the newly constructed RNase A-methylglyoxal (MGO) assay for the early stage and the bovine serum albumin (BSA)-glucose assay for the late stage of Maillard reaction.

RESULTS: This study has demonstrated that hesperidin and its derivatives possessed relatively strong activity against the formation of AGEs. (S)-Hesperetin (5) possessed the highest inhibitory rate up to 57.4% in BSA-glucose assay, 38.2% in RNase A-MGO assay.

DISCUSSION AND CONCLUSION: The new RNase A-MGO assay system could be used for the screening of AGEs inhibitors and hesperidin, and its derivatives could be promising candidate adjuvants for the treatment of diabetes complication, and age-related chronic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app