Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Apicidin induces endoplasmic reticulum stress- and mitochondrial dysfunction-associated apoptosis via phospholipase Cγ1- and Ca(2+)-dependent pathway in mouse Neuro-2a neuroblastoma cells.

Apicidin, a fungal metabolite that functions as a histone deacetylase inhibitor, induces apoptosis in cancer cells. We investigated the molecular mechanisms of the anti-cancer effects of apicidin in mouse Neuro-2a neuroblastoma cells. Apicidin induced apoptotic cell death and activation of caspase-12, -9, and -3. Apicidin induced expression of endoplasmic reticulum (ER) stress-associated proteins, including CCAAT/enhancer binding protein homologous protein (CHOP), cleavage of activating transcription factor 6α, and phosphorylation of eukaryotic initiation factor 2α. Inhibition of ER stress by CHOP knockdown or using the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced apicidin-induced cell death. Apicidin induced reactive oxygen species accumulation and mitochondrial membrane potential loss. An antioxidant, N-acetyl cysteine, reduced apicidin-induced cell death, CHOP expression, and mitochondrial dysfunction. In addition, apicidin increased cytosolic Ca(2+), which was blocked by 2-aminoethoxydiphenyl borate, an antagonist of inositol 1,4,5-trisphosphate receptor, and BAPTA-AM, an intracellular Ca(2+) chelator. 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited apicidin-induced cell death and ER stress. Interestingly, apicidin induced phosphorylation of phospholipase Cγ1 (PLCγ1) and epidermal growth factor receptor (EGFR), and inhibition of PLCγ1 and EGFR reduced cell death and ER stress. Finally, apicidin-induced histone H3 hyperacetylation and reduction of histone deacetylase 2 mRNA expression were not affected by either a PLCγ1 inhibitor, U73122, or the antioxidant, N-acetyl cysteine. Taken together, the results suggest that apicidin induces apoptosis by ER stress and mitochondrial dysfunction via PLCγ1 activation, Ca(2+) release, and reactive oxygen species accumulation in Neuro-2a neuroblastoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app