Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma

Limin Xia, Wenjie Huang, Dean Tian, Hongwu Zhu, Xingshun Qi, Zheng Chen, Yongguo Zhang, Hao Hu, Daiming Fan, Yongzhan Nie, Kaichun Wu
Hepatology: Official Journal of the American Association for the Study of Liver Diseases 2013, 57 (2): 610-24

UNLABELLED: Recurrence and metastasis remain the most common causes of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Thus, it is critical to discover the mechanisms underlying HCC metastasis. Forkhead box C1 (FoxC1), a member of the Fox family of transcription factors, induces epithelial-mesenchymal transition (EMT) and promotes epithelial cell migration. However, the role of FoxC1 in the progression of HCC remains unknown. Here, we report that FoxC1 plays a critical role in HCC metastasis. FoxC1 expression was markedly higher in HCC tissues than in adjacent noncancerous tissues. HCC patients with positive FoxC1 expression had shorter overall survival times and higher recurrence rates than those with negative FoxC1 expression. FoxC1 expression was an independent, significant risk factor for recurrence and survival after curative resection. FoxC1 overexpression induced changes characteristic of EMT and an increase in HCC cell invasion and lung metastasis. However, FoxC1 knockdown inhibited these processes. FoxC1 transactivated Snai1 expression by directly binding to the Snai1 promoter, thereby leading to the inhibition of E-cadherin transcription. Knockdown of Snai1 expression significantly attenuated FoxC1-enhanced invasion and lung metastasis. FoxC1 expression was positively correlated with Snai1 expression, but inversely correlated with E-cadherin expression in human HCC tissues. Additionally, a complementary DNA microarray, serial deletion, site-directed mutagenesis, and a chromatin immunoprecipitation assay confirmed that neural precursor cell expressed, developmentally down-regulated 9 (NEDD9), which promotes the metastasis of HCC cells, is a direct transcriptional target of FoxC1 and is involved in FoxC1-mediated HCC invasion and metastasis.

CONCLUSIONS: FoxC1 may promote HCC metastasis through the induction of EMT and the up-regulation of NEDD9 expression. Thus, FoxC1 may be a candidate prognostic biomarker and a target for new therapies.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"