Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prevention of renal ischemia-reperfusion injury by short hairpin RNA of endothelin A receptor in a rat model.

Endothelin A receptor (ETaR) is a key molecule involved in a variety of biological events such as vessel contraction and inflammatory response in ischemia-reperfusion (I/R) injury. RNA interference using short hairpin RNA (shRNA) is a powerful tool to silence gene expression. Here, the effect of ETaR shRNA on I/R injury in rats was studied. A more effective shRNA sequence out of two constructed into plasmid vectors was selected using the A-10 cell line, and was then applied to a rat model. Twenty-eight male Sprague-Dawley rats were randomized into four groups: Sham, shRNA, vector and phosphate-buffered saline (PBS). Renal I/R injury was induced by clamping the left renal pedicle for one hour followed by reperfusion for 24 h. ETaR shRNA (100 μg) plasmid was administered by renal vein injection 48 h before clamping. The expression of both ETaR mRNA and protein was lowered by ETaR shRNA treatment compared with that in the vector and PBS groups; serum creatinine and blood urea nitrogen were significantly decreased; the semi-quantitative score of renal structural damage was improved; the mRNA level of endothelin 1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), macrophage inflammatory protein 2 (MIP-2) and monocyte chemoattractant protein 1 (MCP-1) was reduced, but nitric oxide (NO) production in kidney tissues was increased (P < 0.05). In conclusion, ETaR shRNA partially silenced ETaR expression in I/R injury kidneys, reduced the mRNA level of ET-1, inflammatory mediators including TNF-α, IL-6, MIP-2 and MCP-1, increased NO production, and ultimately improved renal function and structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app